Wireless Solar Powered CCTV Surveillance Cameras
Search by Keyword

Search by Keyword

Please click a category below to view the products and specifications
1 Multi-Option - High Performance H.265 - Turnkey Wireless Solar Powered CCTV Surveillance CamerasMulti-Option - High Performance H.265 - Turnkey Wireless Solar Powered CCTV Surveillance Cameras are the premium choice for a high-end solution, with a encrypted " Round the World " transmission distance used for Construction companies, Oil companies, Home Land Security and Military Applications our H.265 technology delivers faster transmission with smaller file sizes, delivering DVD quality video as far as you need it and Works seamlessly with our Concert Software.
2 Custom H.265 Wireless Solar Powered CCTV Surveillance Cameras - Let your imagination run WILDCustom H.265 Wireless Solar Powered CCTV Surveillance Cameras - Let your imagination run WILD..... We can customize a H.265 Wireless Solar Powered CCTV Surveillance Camera system to any size of project you may have from a simple 10 camera construction site to an entire Country, yes even the back end and Control room. Our Custom H.265 Wireless Solar Powered CCTV Surveillance CCTV Cameras can be seamlessly expanded and integrated into 1 software platform.
3 Got my own cameras.. Need a Solar Battery Back-up Solution!Got your own cameras.. just need a Solar Battery Back-up Solution? We can accomodate you no problem! Please note: Our solar powered battery back up solutions are directed more towards commercial and industrial applications, but we will talk to everyone and service you the best we can.
With todays energy prices soaring, and the natural resources making a huge impact on our atmosphere, the costs of installaing a engineered Wireless Solar Powered CCTV Camera system solution is very affordable. Pay for it once and it pays you back for years to come without taping into the grid or the natural resources. Maintenance just like everything else will be required, but the ROI is far greater than what current natural resources can offer.

More and more Governements, Companies, business's and everyday people these days are looking to reduce their costs and the footprint on the environment, by taking advantage of power that has been around for years. We encorage you to give us a call to see what a difference our products and solutions can make for you! Give us a call today @ 403.668.4758

Solar Why and How To

Solar panels absorb sunlight through their silicon membrane and turn the energy absorbed into useable power.

You have probably also been hearing about the "solar revolution" for the last 20 years -- the idea that one day we will all use free electricity from the sun. This is a seductive promise: On a bright, sunny day, the sun shines approximately 1,000 watts of energy per square meter of the planet's surface, and if we could collect all of that energy we could easily power our homes and offices for free.

Solar Cell Introduction

In this article, we will examine solar cells to learn how they convert the sun's energy directly into electricity. In the process, you will learn why we are getting closer to using the sun's energy on a daily basis, and why we still have more research to do before the process becomes cost effective.

Photovoltaic Cells: Converting Photons to Electrons

The solar cells that you see on calculators and satellites are photovoltaic cells or modules (modules are simply a group of cells electrically connected and packaged in one frame). Photovoltaic’s, as the word implies (photo = light, voltaic = electricity), convert sunlight directly into electricity. Once used almost exclusively in space, photovoltaic’s are used more and more in less exotic ways. They could even power your house.

How do these devices work? Photovoltaic (PV) cells are made of special materials called semiconductors such as silicon, which is currently the most commonly used. Basically, when light strikes the cell, a certain portion of it is absorbed within the semiconductor material. This means that the energy of the absorbed light is transferred to the semiconductor. The energy knocks electrons loose, allowing them to flow freely.

PV cells also all have one or more electric fields that act to force electrons freed by light absorption to flow in a certain direction. This flow of electrons is a current, and by placing metal contacts on the top and bottom of the PV cell, we can draw that current off to use externally. For example, the current can power a calculator. This current, together with the cell's voltage (which is a result of its built-in electric field or fields), defines the power (or wattage) that the solar cell can produce.

That's the basic process, but there's really much more to it. Let's take a deeper look into one example of a PV cell: the single-crystal silicon cell.

How Silicon Makes a Solar Cell

Silicon has some special chemical properties, especially in its crystalline form. An atom of silicon has 14 electrons, arranged in three different shells. The first two shells, those closest to the center, are completely full. The outer shell, however, is only half full, having only four electrons. A silicon atom will always look for ways to fill up its last shell (which would like to have eight electrons). To do this, it will share electrons with four of its neighbor silicon atoms. It's like every atom holds hands with its neighbors, except that in this case, each atom has four hands joined to four neighbors. That's what forms the crystalline structure, and that structure turns out to be important to this type of PV cell.

We've now described pure, crystalline silicon. Pure silicon is a poor conductor of electricity because none of its electrons are free to move about, as electrons are in good conductors such as copper. Instead, the electrons are all locked in the crystalline structure. The silicon in a solar cell is modified slightly so that it will work as a solar cell.

A solar cell has silicon with impurities -- other atoms mixed in with the silicon atoms, changing the way things work a bit. We usually think of impurities as something undesirable, but in our case, our cell wouldn't work without them. These impurities are actually put there on purpose. Consider silicon with an atom of phosphorous here and there, maybe one for every million silicon atoms.

Phosphorous has five electrons in its outer shell, not four. It still bonds with its silicon neighbor atoms, but in a sense, the phosphorous has one electron that doesn't have anyone to hold hands with. It doesn't form part of a bond, but there is a positive proton in the phosphorous nucleus holding it in place.

When energy is added to pure silicon, for example in the form of heat, it can cause a few electrons to break free of their bonds and leave their atoms. A hole is left behind in each case. These electrons then wander randomly around the crystalline lattice looking for another hole to fall into. These electrons are called free carriers, and can carry electrical current.

There are so few of them in pure silicon, however, that they aren't very useful. Our impure silicon with phosphorous atoms mixed in is a different story. It turns out that it takes a lot less energy to knock loose one of our "extra" phosphorous electrons because they aren't tied up in a bond -- their neighbors aren't holding them back. As a result, most of these electrons do break free, and we have a lot more free carriers than we would have in pure silicon. The process of adding impurities on purpose is called doping, and when doped with phosphorous, the resulting silicon is called N-type ("n" for negative) because of the prevalence of free electrons. N-type doped silicon is a much better conductor than pure silicon is.

Actually, only part of our solar cell is N-type. The other part is doped with boron, which has only three electrons in its outer shell instead of four, to become P-type silicon. Instead of having free electrons, P-type silicon ("p" for positive) has free holes. Holes really are just the absence of electrons, so they carry the opposite (positive) charge. They move around just like electrons do.

The interesting part starts when you put N-type silicon together with P-type silicon. Remember that every PV cell has at least one electric field. Without an electric field, the cell wouldn't work, and this field forms when the N-type and P-type silicon are in contact. Suddenly, the free electrons in the N side, which have been looking all over for holes to fall into, see all the free holes on the P side, and there's a mad rush to fill them in.

Anatomy of a Solar Cell

Before now, our silicon was all electrically neutral. Our extra electrons were balanced out by the extra protons in the phosphorous. Our missing electrons (holes) were balanced out by the missing protons in the boron. When the holes and electrons mix at the junction between N-type and P-type silicon, however, that neutrality is disrupted. Do all the free electrons fill all the free holes? No. If they did, then the whole arrangement wouldn't be very useful. Right at the junction, however, they do mix and form a barrier, making it harder and harder for electrons on the N side to cross to the P side. Eventually, equilibrium is reached, and we have an electric field separating the two sides.

The effect of electrical field in a PV cell

This electric field acts as a diode, allowing (and even pushing) electrons to flow from the P side to the N side, but not the other way around. It's like a hill -- electrons can easily go down the hill (to the N side), but can't climb it (to the P side).

So we've got an electric field acting as a diode in which electrons can only move in one direction.
When light, in the form of photons, hits our solar cell, its energy frees electron-hole pairs.

Each photon with enough energy will normally free exactly one electron, and result in a free hole as well. If this happens close enough to the electric field, or if free electron and free hole happen to wander into its range of influence, the field will send the electron to the N side and the hole to the P side. This causes further disruption of electrical neutrality, and if we provide an external current path, electrons will flow through the path to their original side (the P side) to unite with holes that the electric field sent there, doing work for us along the way. The electron flow provides the current, and the cell's electric field causes a voltage. With both current and voltage, we have power, which is the product of the two.

Operation of a PV cell

There are a few more steps left before we can really use our cell. Silicon happens to be a very shiny material, which means that it is very reflective. Photons that are reflected can't be used by the cell. For that reason, an antireflective coating is applied to the top of the cell to reduce reflection losses to less than 5 percent.

The final step is the glass cover plate that protects the cell from the elements. PV modules are made by connecting several cells (usually 36) in series and parallel to achieve useful levels of voltage and current, and putting them in a sturdy frame complete with a glass cover and positive and negative terminals on the back.

Basic structure of a generic silion PV cell

How much sunlight energy does our PV cell absorb? Unfortunately, the most that our simple cell could absorb is around 25 percent, and more likely is 15 percent or less. Why so little?

Besides Single-crystal Silicon...

Single-crystal silicon isn't the only material used in PV cells. Polycrystalline silicon is also used in an attempt to cut manufacturing costs, although resulting cells aren't as efficient as single crystal silicon. Amorphous silicon, which has no crystalline structure, is also used, again in an attempt to reduce production costs. Other materials used include gallium arsenide, copper indium diselenide and cadmium telluride. Since different materials have different band gaps, they seem to be "tuned" to different wavelengths, or photons of different energies. One way efficiency has been improved is to use two or more layers of different materials with different band gaps. The higher band gap material is on the surface, absorbing high-energy photons while allowing lower-energy photons to be absorbed by the lower band gap material beneath. This technique can result in much higher efficiencies. Such cells, called multi-junction cells, can have more than one electric field.

Energy Loss in a Solar Cell

Visible light is only part of the electromagnetic spectrum. Electromagnetic radiation is not monochromatic -- it is made up of a range of different wavelengths, and therefore energy levels. Light can be separated into different wavelengths, and we can see them in the form of a rainbow. Since the light that hits our cell has photons of a wide range of energies, it turns out that some of them won't have enough energy to form an electron-hole pair. They'll simply pass through the cell as if it were transparent. Still other photons have too much energy. Only a certain amount of energy, measured in electron volts (eV) and defined by our cell material (about 1.1 eV for crystalline silicon), is required to knock an electron loose. We call this the band gap energy of a material.

If a photon has more energy than the required amount, then the extra energy is lost (unless a photon has twice the required energy, and can create more than one electron-hole pair, but this effect is not significant). These two effects alone account for the loss of around 70 percent of the radiation energy incident on our cell.

Why can't we choose a material with a really low band gap, so we can use more of the photons? Unfortunately, our band gap also determines the strength (voltage) of our electric field, and if it's too low, then what we make up in extra current (by absorbing more photons), we lose by having a small voltage. Remember that power is voltage times current. The optimal band gap, balancing these two effects, is around 1.4 eV for a cell made from a single material.

We have other losses as well. Our electrons have to flow from one side of the cell to the other through an external circuit. We can cover the bottom with a metal, allowing for good conduction, but if we completely cover the top, then photons can't get through the opaque conductor and we lose all of our current (in some cells, transparent conductors are used on the top surface, but not in all). If we put our contacts only at the sides of our cell, then the electrons have to travel an extremely long distance (for an electron) to reach the contacts.

Remember, silicon is a semiconductor -- it's not nearly as good as a metal for transporting current. Its internal resistance (called series resistance) is fairly high, and high resistance means high losses. To minimize these losses, our cell is covered by a metallic contact grid that shortens the distance that electrons have to travel while covering only a small part of the cell surface. Even so, some photons are blocked by the grid, which can't be too small or else its own resistance will be too high.

Now that you know how a solar panel / cell works lets look at how it powers something and the requirements you will need to meet.


What would you have to do to power your equipment with solar energy? Although it's not as simple as just slapping some modules on your equipment, it's not extremely difficult to do either, but will require calculations.

First of all, not every location has the correct orientation or angle of inclination to take advantage of the suns energy. Non-tracking PV systems in the Northern Hemisphere should point toward true south (this is the orientation). They should be inclined at an angle equal to the area's latitude to absorb the maximum amount of energy year-round. A different orientation and/or inclination could be used if you want to maximize energy production for the morning or afternoon, and/or the summer or winter. Of course, the modules should never be shaded by nearby trees or buildings, no matter the time of day or the time of year. In a PV module, even if just one of its 36 cells is shaded, power production will be reduced by more than half.

If you have a location with an un-shaded, south-facing orientation, you need to decide what size system you need. This is complicated by the facts that your electricity production depends on the weather, which is never completely predictable, and that your electricity demand will also vary.

These hurdles are fairly easy to clear. Meteorological data gives average monthly sunlight levels for different geographical areas. This takes into account rainfall and cloudy days, as well as altitude, humidity, and other more subtle factors. You should design for the worst month, so that you'll have enough electricity all year. With that data, and knowing your equipments power requirement (you must add together the power requirements of all equipment you intend to power with your solar system), there are simple methods you can use to determine just how many PV modules you'll need. You'll also need to decide on a system voltage, which you can control by deciding how many modules to wire in series.

You may have already guessed a couple of problems that we'll have to solve. First, what do we do when the sun isn't shining?

Solving Solar-power Issues in CCTV

Certainly, no one would accept only having electricity during the day, and then only on clear days, if they have a choice. We need energy storage; this is accomplished with a battery storage solution. Even though batteries add ongoing cost and maintenance to the solar system, if you are in a remote area you won’t have a choice but to use them. Solar in a CCTV application is usually last resort. One way around the problem is to connect the charging system to the utility grid, charging the batteries to full capacity so when there is no power available the system will run off the batteries and you won’t have to worry about your system shutting down. An example of this would be a CCTV system to be installed in a parking lot with existing power standards / light poles / electricity poles, where utility power is only supplied during the dark hours and turned off during the day.

If you decide to use batteries, keep in mind that they will have to be maintained, and then replaced after a certain number of years usually 5 years is the typical battery life, but newer technologies are always being invented. The PV modules should last 20 years or more, but batteries just don't have that kind of useful life. Batteries in PV systems can also be dangerous because of the energy they store and the acidic electrolytes they contain, so you'll need a well-ventilated, non-metallic enclosure for them.

Although several different kinds of batteries are commonly used, the one characteristic they should all have in common is that they are deep-cycle batteries. Unlike your car battery, which is a shallow-cycle battery, deep-cycle batteries can discharge more of their stored energy while still maintaining long life. Car batteries discharge a large current for a very short time -- to start your car -- and are then immediately recharged as you drive. PV batteries generally have to discharge a smaller current for a longer period (such as all night), while being charged during the day.

The most commonly used deep-cycle batteries in CCTV solar systems are Glass mat or GEL batteries. Deep-cycle lead-acid batteries can't be discharged 100 percent without seriously shortening battery life, and generally, PV systems are designed to discharge lead-acid batteries no more than 40 percent or 50 percent.

Also, the use of batteries requires the installation of another component called a charge controller. Batteries last a lot longer if care is taken so that they aren't overcharged or drained too much. That's what a charge controller does. Once the batteries are fully charged, the charge controller doesn't let current from the PV modules continue to flow into them. Similarly, once the batteries have been drained to a certain predetermined level, controlled by measuring battery voltage, many charge controllers will not allow more current to be drained from the batteries until they have been recharged. The use of a charge controller is essential for long battery life.

The other problem besides energy storage is that the electricity generated by your PV modules, and extracted from your batteries may not be in the correct form; depending on what you equipment uses AC or DC voltage you will have to add additional components to change the voltage to the correct one. You will also need to consider the converters power loss and calculate that into the total power draw of the end solution so you have enough to power everything.

Some PV modules, called AC modules, actually have an inverter already built into each module, eliminating the need for a large, central inverter, and simplifying wiring issues.
Recently Viewed Items

Recently Viewed Items

Home  ·  Product Categories  ·  About Us  ·  Contact Us  ·  Privacy Policy
Copyright © 2020 - WECU Surveillance.com is a Division of CVRL Industries Inc.
WECU Surveillance Security Cameras and WECU Surveillance.com are one and the same.
Alberta, Canada